Math 347H: Fundamental Math (H) Номеwork 11 Optional, not for turning in

- **1.** Prove that for each $x, r \in \mathbb{R}$ and a sequence $(x_n) \subseteq \mathbb{R}$, if $x_n \to x$ and x > r, then $\forall^{\infty} n$, $x_n > r$.
- **2.** Let (X, d) be a metric space, let (x_n) be a sequence in it, and let $x \in X$. Prove that $x_n \to x$ if and only if $d(x_n, x) \to 0$.
- **3.** Let (X,d) denote a metric space and let (x_n) denote a sequence in it. For each of the following choices of (X,d) and (x_n) , determine whether (x_n) converges. Prove your answers.
 - (a) $X := \mathbb{R}, d(x, y) := |x y|, x_n := \frac{n^2 + 1}{21n^2 + 3n + 100}.$

(b)
$$X := \mathbb{R}, d(x, y) := |x - y|, x_n := \frac{n^2 + 1}{21n + 100}.$$

- (c) $X := \mathbb{R}, d(x, y) := |x y|, x_n := \frac{(-1)^n n}{n+1}.$
- (d) $X := \mathbb{R}$, d(x, y) := |x y|, $x_n := \frac{n^2}{2^n}$. Hint: It is enough to prove that $2^n \ge n^3$.
- (e) $X := \mathbb{R}^2$. For $x \in \mathbb{R}^2$, we write x(i) for its i^{th} coordinate, so x = (x(0), x(1)). For $x, y \in \mathbb{R}^2$, let $d(x, y) := d_{\infty}(x, y) := \max\{|x(0) y(0)|, |x(1) y(1)|\}$ and let $x_n := (\frac{1}{n+1}, n)$.
- (f) $X := \mathbb{R}^2$, $d(x, y) := d_1(x, y) = |x(0) y(0)| + |x(1) y(1)|$, and $x_n := \left(\frac{n}{2n-1}, \frac{(-1)^n}{n+1}\right)$.
- (g) $X := \mathbb{R}$ and d(x, y) := |x y|. Let $1.d_1d_2d_3...$ be the decimal representation of $\sqrt{2}$. For each $n \in \mathbb{N}$, define $x_n := 1.d_1d_2...d_n000...$, so $x_n \in \mathbb{Q}$.
- (h) $X := \mathbb{Q}$, and *d* and x_n are the same as in the previous part.
- 4. Let $X := 2^{\mathbb{N}}$ and let *d* be the metric on *X* defined in class, namely: for $x, y \in 2^{\mathbb{N}}$, $d(x, y) := 2^{-\Delta(x, y)}$, where $\Delta(x, y)$ is the least index $i \in \mathbb{N}$ for which $x(i) \neq y(i)$.
 - (a) For each $n \in \mathbb{N}$, define an element $x_n \in 2^{\mathbb{N}}$ by $x_n := \underbrace{00...0}_{n \text{ times}} 111...$ Prove that this

sequence converges to the constant 0 sequence.

(b) More generally, given a sequence (x_n) in $2^{\mathbb{N}}$ and $x \in 2^{\mathbb{N}}$, prove the following necessary and sufficient condition for $x_n \to x$:

$$x_n \to x \iff \forall i \in \mathbb{N}, \ \forall^{\infty} n \in \mathbb{N} \ x_n(i) = x(i).$$

CAUTION: In the condition on the right, the order of quantifiers really matters.

- 5. Prove that in any metric space, Cauchy sequences are bounded.
- **6.** Let (x_n) be a bounded sequence of reals.
 - (a) Prove that if (x_n) is increasing, then it converges to its supremum $s := \sup \{x_n : n \in \mathbb{N}\}$.
 - (b) State and prove the analogous statement for decreasing (and bounded) sequences.
 - (c) Conclude the so-called Monotone Convergence Theorem: Bounded monotone (i.e. increasing or decreasing) sequence in \mathbb{R} converge.